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ABSTRACT

Aim: To test whether intraspecific trait responses to climate within and among populations 

across species distribution ranges can be untangled using field observations, under the 

rationale that, in natural forest tree populations, long-term climate shapes local adaptation of 

populations while recent climate change drives phenotypic plasticity.

Location: Europe.

Time period: 1901-2014.

Taxa: Silver fir (Abies alba Mill.) and sessile oak (Quercus petraea (Matt.) Liebl.).

Methods: We estimated the variation of individual tree height as a function of long-term and 

short-term climates to tease apart provenance effects (variation among populations of 

different geographical origin), plasticity (within population) and their interaction, using 

mixed-effect models calibrated with National Forest Inventory data (in-situ models). To 

validate our approach, we tested the ability of in-situ models to predict independently tree 

height observations in common gardens where provenance and plastic effects can be 

measured and separated. In-situ model predictions of tree height variation among 

provenances and among planting sites were compared to observations in common gardens 

and to predictions from a similar model calibrated using common garden data (ex-situ 

model).

Results: In Q. petraea, we found high correlations between in-situ and ex-situ model 

predictions of provenance and plasticity effects and their interaction on tree height (r > 0.80). 

We showed that the in-situ models significantly predicted tree height variation among 

provenances and sites for Abies alba and Quercus petraea. Spatial predictions of phenotypic 

plasticity across species distribution ranges indicate decreasing tree height in populations of 

warmer climates in response to recent anthropogenic climate warming.
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Main conclusions: Our modelling approach using National Forest Inventory observations 

provides a new perspective for understanding local adaptation to climate and phenotypic 

plasticity across species ranges. Its application is particularly interesting for species for which 

common garden experiments do not exist or do not cover the entire climatic range of the 

species.

Keywords: Abies alba, common gardens, intraspecific trait variation, national forest 

inventory, Quercus petraea, tree height

INTRODUCTION

Understanding the causes of phenotypic variation across species distribution ranges is 

important because phenotypic traits are fundamental drivers of community assembly, 

ecosystem functioning, and population response to climate change (Diaz et al., 2004; Shipley 

et al., 2006; Alberto et al., 2013; Kunstler et al., 2016). Phenotypic variation within and 

among populations are the two components of intraspecific trait responses to environmental 

factors. Traits vary within populations according to phenotypic plasticity (i.e., the capacity of 

one genotype to render different phenotypes under different environments, Valladares et al., 

2006), and among populations according to local adaptation (i.e., the fact that individuals 

have a better fitness in their local environment than individuals from other populations, 

Kawecki & Ebert, 2004) in addition to neutral and maladaptive components of genetic 

variation (Savolainen et al., 2007; Leimu & Fischer, 2008). The spatial distribution of the 

amount of phenotypic variation that can be attributed to phenotypic plasticity or to local 

adaptation may change the response of organisms to climate change as predicted by 

theoretical approaches (Chevin et al., 2010; Valladares et al., 2014). Yet, attributing the cause 

of trait-climate relationships across species ranges to among and within population 
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components remains a challenge without using costly, long-term common garden 

experiments (Benito Garzón et al., 2019).

Long-term spatial divergence under different climatic conditions is known to promote 

phenotypic differentiation of populations as a result of local adaptation to climate (Mimura & 

Aitken, 2010; Savolainen et al., 2013; Yeaman et al., 2016), which affects their current 

response to a particular climate (Rehfeldt et al., 2002; Savolainen et al., 2007; Valladares et 

al., 2014). However, significantly less is known about the distribution of phenotypic 

plasticity and its importance for populations for coping with rapid climate change across the 

species range, especially in long-lived sessile organisms such as forest trees (Nicotra et al., 

2010; Benito Garzón et al., 2011; Valladares et al., 2014; Duputié et al., 2015).

Patterns of phenotypic plasticity and local adaptation of populations have long been 

assessed using common garden or reciprocal transplant experiments (also named ‘provenance 

tests’ or ‘genetic trials’), in which genotypes of known climatic origin (i.e., provenances) are 

growing in experimental plantations where short-term environmental conditions are 

controlled. In common gardens, trait differences among provenances that are related to the 

long-term climate of origin of the provenance are often interpreted in terms of local 

adaptation (e.g. Mimura & Aitken, 2010; Savolainen et al., 2013; Benito Garzón et al., 2019), 

although neutral and maladaptive components of genetic variation may also be responsible 

for differences among provenances (Savolainen et al., 2007; Leimu & Fischer, 2008). On the 

other hand, plasticity is quantified by trait variation with the short-term climatic conditions at 

the planting sites (see Matyas, 1994; Wang et al., 2006; Leites et al., 2012 for forest trees). 

Common gardens have been established for a few economically important tree species for 

which only a restricted range of populations and ontogenic stages have been studied, which 

makes the understanding of phenotypic variation across species ranges limited (Fady et al., 

2016).

4

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102



On the other hand, causes of phenotypic variation are confounded in natural conditions, in 

addition to the effects of ontogeny and competition. National Forest Inventories (NFI) 

provide extensive data of phenotypic variation of forest trees in natural conditions, and hence, 

they have been widely used to test different ecological questions such as the effects of 

functional traits on competition, forest productivity and response to climate change (Kunstler 

et al., 2016; Ratcliffe et al., 2016; Ruiz-Benito et al., 2017), but to date, how phenotypic 

traits in NFI vary as a function of differences among provenances and plasticity remains 

unexplored.

Here we show that intraspecific trait variation among provenances, species plasticity and 

their interaction, can be statistically estimated using the field data recorded in French NFI for 

two ecologically and economically important forest tree species usually managed using 

natural regeneration, Abies alba Mill. and Quercus petraea (Matt.) Liebl. We use tree height, 

an important adaptive and fitness-related trait (Savolainen et al., 2007; Díaz et al., 2016), to 

independently test our approach on field observations (NFI) and we validate our findings 

using common garden data. Our approach expands the space-for-time substitution analysis 

developed in common gardens (Matyas, 1994; Rehfeldt et al., 2002; Leites et al., 2012) to 

field observations of phenotypic trait variation, with the rationale that trees inventoried in the 

field have a local origin (i.e. seed sources originated within the bioclimatic region inhabited 

by the trees). In particular, to separate the sources of phenotypic variation in nature, we 

examined climatic variations that occur at two temporal and spatial scales: first, regional 

patterns in long-term climate (LTC) that have promoted trait variation among provenances as 

a result of local adaptation (Savolainen et al., 2007; Mimura & Aitken, 2010; Kremer et al., 

2012) – analysed in common gardens by growing different provenances in a same location – 

and, second, short-term climate (STC) that shapes plastic responses of individual trees to 

recent climate change (Nicotra et al., 2010; Valladares et al., 2014) – analysed in common 
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gardens by growing the same provenance in different locations. Our approach opens new 

perspectives for the understanding of phenotypic variation patterns across species distribution 

ranges using large field observation datasets such as forest inventories.

METHODS

We analysed tree height (m), a fitness-related phenotypic trait, measured both in NFI and 

common gardens. We selected two major European forest species with contrasted life history 

traits and ecological requirements: Abies alba Mill. (a montane evergreen needle-leaved 

gymnosperm) and Quercus petraea (Matt.) Liebl. (a temperate deciduous broadleaved 

angiosperm). In the NFI, these two species are traditionally managed using natural 

regeneration, thus adult trees are assumed to derive from the local gene pool.

We calibrated two independent mixed-effect models of individual tree height using NFI (in-

situ model) and common garden data (ex-situ model), respectively. To validate our models we 

used two different methods (Fig. 1). The first one is a validation using common garden data: 

it directly compares the results of the in-situ model with independent tree height 

measurements standardized by common garden and by provenance to respectively separate 

the effects of the provenance and plasticity. The second one is a validation using ex-situ 

model predictions: it compares the predictions of in situ and ex-situ models regarding the 

relative contribution to the model of the climate of the planting site (plastic effect) and that of 

the climate of the origin of the provenances (provenance effect), and the interaction between 

both. All analyses and computations were carried out in the R software environment (R Core 

Team, 2013).
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Phenotypic data

National Forest Inventories (NFI)

Observation data comprised ten annual campaigns of the French NFI (2005–2014; 

http://inventaire-forestier.ign.fr), which consists of a regular grid (1 km2) of temporary forest 

plots of 707 m2 each. In this study, we focused on French NFI (Appendix S1, Fig. S1.1) 

because inventories of neighbouring countries do not provide age data, thereby preventing the 

effect of age to be accounted for in models. Nevertheless, the distribution of French NFI plots 

has a good representativeness of the climatic range of the two species (Fig. S2.1). In each 

NFI plot, we selected trees for which height (in m), diameter at breast height (dbh; in cm) and 

age (years) data were measured. In particular, tree age was estimated from wood increment 

cores collected at breast height (1.30 m) for the one or two of the largest dominant trees in the 

plot. To account for stand density and the local abundance of neighbouring trees on tree 

height variation among plots, we computed for each NFI plot the sum of the basal area of 

neighbouring trees larger than 7.5 cm dbh (Kunstler et al., 2016). We removed plots outside 

the natural distribution range of the species (Fig. S1.1), identified as plantation or if there was 

any evidence of recent (<5 years) management, for example logging. We assumed that trees 

in the remaining plots originated from local provenances within the same bioclimatic region. 

The final dataset consisted of 5376 trees from 3614 plots for Q. petraea, and 1304 trees from 

904 plots for A. alba.

Common gardens

Common garden data were used to independently validate in-situ models (NFI calibration). 

They were established for breeding purposes during 1990–1996 for Q. petraea and 1967–

1972 for A. alba, as follows: (i) seeds were collected from seed sources (hereafter 

provenances) throughout the natural distribution range of the species (N = 141 for Q. petraea, 
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N = 47 for A. alba); (ii) the seeds were sown in a nursery; (iii) seedlings were transplanted to 

several sites, i.e., common gardens (N = 13 for Q. petraea, N = 6 for A. alba; Fig. S1.1), 

using a randomised block design; and (iv) measurements of tree height were made at several 

different years. To avoid pseudo-replication, we randomly selected a single measurement year 

for each tree. Neighbour basal area was assumed to be constant because plantations have a 

regular spacing design. Tree age at the time of height measurement was considered to be the 

time since sowing. A detailed description of the Q. petraea provenance tests is provided in a 

previous study (Sáenz-Romero et al., 2017). A description of the A. alba provenances studied 

in common gardens is provided in Appendix S1 (Tables S1-S2).

Climate data

To analyse phenotypic trait response to long-term climate and recent climate change, we used 

the yearly climate grids (1901–2014) at 30 arc sec resolution (~1 km2) of the EuMedClim 

dataset covering Europe and the Mediterranean Basin (Fréjaville & Benito Garzón, 2018). 

For the present study, the following bioclimatic variables were considered (Fig. S2.1): annual 

mean temperature, maximum temperature of the warmest month, minimum temperature of 

the coldest month, annual precipitation, precipitation of the wettest and the driest month, 

annual potential evapotranspiration, potential evapotranspiration of the warmest and the 

coldest month and water balance (precipitation minus potential evapotranspiration) of the 

wettest and the driest month. EuMedClim was computed following an anomaly approach 

using the fine 30’ resolution of WorldClim climate means (version 1.4, Hijmans et al., 2005) 

to adjust the coarse spatial 0.5° resolution of yearly climate data from the Climate Research 

Unit (version ts3.23, Harris et al., 2014). EuMedClim provides inter-annual variation of 

bioclimatic conditions at high spatial resolution, allowing the analysis of climate at different 

8

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199



spatial and temporal scales instead of using climate means over a reference period (e.g. 

WorldClim).

To fulfil the requirements of our modelling approach based on the different climate scales 

at which phenotypic plasticity and local adaptation act, we split the climate data into three 

different sets of data: (i) long-term climate (LTC) that is the average climate value of the 

1901–1960 period, and represents the climate driven local adaptation in the past for 

provenances (for common gardens) or for a common bioclimatic origin (for NFI, assuming 

that that all trees have a local origin in a given bioclimatic origin – Appendix S2); (ii) short-

term climate (STC) represents the plastic response of trees to recent climate and is calculated 

as the local climate averaged over the 10 years preceding the measurements (NFI and 

common garden data);  iii) recent climate change (RCC), calculated by subtracting LTC from 

STC to avoid collinearity problems between LTC and STC in NFI.

Models of intra-specific trait variability 

Hereafter, we refer to models calibrated using NFI data as in-situ models and to models 

calibrated using common gardens as ex-situ models. For a given species, the phenotypic trait 

Tijk (tree height) of the ith tree individual of the jth bioclimatic region (or provenance) in the kth 

plot (or common garden) was modelled as follows:

log(Tijk) = α0 + α1 LTCj + α2 LTCj
2 + α3 RCCjk + α4 RCCjk

2 + α5 LTCj × RCCjk + β + δ + ε (1)

where LTCj is the long-term climate of either the jth bioclimatic region in NFI or the jth 

provenance in common gardens; RCCjk is the recent climate change defined as the difference 

between the STC at the kth site (i.e., the NFI plot or the common garden) and LTCj. We 

included quadratic terms for both LTCj and RCCjk to consider non-linear shapes in height 
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responses to climate across species ranges. β includes ontogeny and neighbour basal area 

covariates and is defined as:

β  = α6 log(ageijk) + α7 log(BAcijk) + α6 log(ageijk) × RCCjk + α7 log(BAcijk) × LTCj (2)

where age is the tree age (in years, estimated at breast height in NFI and as the time since 

sowing in common gardens) and BAc is the sum of the basal area of neighbouring trees 

(assumed to be constant in common gardens). δ gathers random effects and ε is the model 

error. To control for differences among sampling units in soil fertility, management (or 

disturbances) and environmental factors not accounted for by fixed effects, we set as random 

effects the plot nested within the bioclimatic region in in-situ models and the block nested 

within the site in ex-situ models (randomised block design). In the case of A. alba, the 

bioclimatic region random effect was not retained because it inflated p-values of LTC terms 

in the in-situ model (high redundancy). One main difference between NFI and common 

garden data is the age of trees (Fig. S4.1). We reduced this difference by excluding old trees 

(> 200 years) in NFI and saplings (< 10 years) in common gardens, and we added age as a 

covariate in the models to control for ontogeny. To control for potential differences in growth 

response to climate change among ontogenic stages, we added the interaction term ageijk × 

RCCjk in both models. We also introduced BAc as covariate to control for neighbour basal 

area (Fig. S4.1) and the interaction term BAcijk × LTCj to control for potential differences in 

neighbour basal area effects among bioclimatic regions in in-situ models. A saturated model 

form including BAcijk × RCCjk and ageijk × LTCj interaction terms was not retained as they 

were not significant and decreased model parsimony and the significance of parameters of 

interest. Models were fitted using the R package nlme (Pinheiro et al., 2015). Coefficients of 

determination were used to compute the percentage of explained variance by fixed effects 

alone (R2
marginal) and both fixed and random effects (R2

conditional) (Nakagawa & Schielzeth, 

2013).
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For each species, we selected one single explanatory bioclimatic variable to represent LTC 

and RCC, the same between the two datasets (to enable comparison). The variable selection 

process was as follows. First, we fitted one model per dataset for each bioclimatic variable 

(Fig. S2.1) using eqns (1-2). Second, we removed models when parameter estimates for LTC 

and RCC were not significant at P = 0.1 or when positive quadratic relationships were fit (α2 

> 0 or α4 > 0) to keep models with decreasing tree height towards one or both ends of the 

climatic gradient. Third, competitive models were compared using the Akaike information 

criterion (AIC), and the final model selection was based on the lowest AIC values for both 

in-situ and ex-situ models (to enable comparison).

Model predictions

Separating provenance effect, plasticity and their interaction

Model coefficients were used to separate components of phenotypic variation by substituting 

RCC to its climatic components (RCCjk = STCk - LTCj) in eqn. (1):

log(Tijk) = α0 + (α1 - α3) LTCj + (α2 + α4 - α5) LTCj
2 + α3 STCk + α4 STCk

2 

+ (α5 - 2α4) LTCj × RCCjk + β + δ + ε (3)

This analytical decomposition enables to estimate the relative effects of the long-term and 

short-term climate in the field, using RCC and LTC from eqn. (1). From eqn. (3), coefficients 

associated to linear (α1 – α3) and quadratic (α2 + α4 - α5) variation of LTC are used to predict the 

effect of the provenance, coefficients associated to linear (α3) and quadratic (α4) variation of 

STC are used to predict phenotypic plasticity (reaction norms) and those associated to LTCj × 

STCk (α5 – 2α4) are used to predict their interaction.
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Spatial predictions 

The in-situ and ex-situ models were used to make spatial predictions of provenance and 

plasticity effects, their interaction and the total component of tree height response to climate 

across Europe. We computed LTCj and STCk in each grid cell (30 arc sec resolution) 

respectively using the long-term (1901–1960) and the recent short-term (2001–2014) 

averaged values of the corresponding climatic variables to compute maps according to fitted 

parameters in eqn. (3). Effects of covariates were fixed for age (12-year-old trees), BAc (30 

m2 ha−1) and for their interaction with RCCjk and LTCj (both averaged across the species 

natural range), respectively, according to eqn. (2), and these constants (including the intercept 

α0) were added to the total variation component.

Model validation 

To validate our approach, we used two alternative methods (Fig. 1) to test the ability of in-

situ models to predict independent tree height observations in common gardens where the 

effects of the provenance, plasticity and their interaction can be separated. 

Validation using common garden data

To compare the predictions of in-situ models with raw common garden data, we first 

predicted the mean height of each provenance in each site (provenance-by-site mean) from 

eqn. (3), as a function of the LTC of the provenance and the STC of the site for a given age 

and neighbour basal area. Then, we compared these predictions to observed values in 

common gardens. Both predicted and observed provenance-by-site means were standardized 

across sites and provenances to estimate provenance and plasticity effects, respectively (see 
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Appendix S3). Correlations between predicted and observed values were tested using Pearson 

correlation coefficients.

Validation using ex-situ model predictions

To compare the predictions of in-situ and ex-situ models, we predicted provenance and 

plasticity effects, and their interaction, as a function of LTC and STC conditions in common 

gardens using both in-situ and ex-situ models (see Appendix S3). From eqn. (3), the mean 

tree height of a provenance planted in several common gardens was predicted for a given age 

and neighbour basal area as a function of the LTC of the provenance (provenance effect) and 

the mean tree height of each provenance was predicted as a function of the STC of the site 

(plasticity of the provenance). Correlations between paired predictions from in-situ and ex-

situ models of provenance and plasticity effects, their interaction and the sum of all three 

components of tree height (total variation) were tested using Pearson correlation coefficients. 

For the interaction component, correlation coefficients were computed separately for the 

mean plastic responses (reaction norms) of cold, core and warm provenances. We classified 

provenances among cold, core and warm parts of the range using the 1-33th, 34-66th and 67-

100th percentiles of LTC, respectively, computed across the natural distribution range of the 

species.

RESULTS

We found both in-situ and ex-situ models with significant terms for LTC, RCC and their 

interaction on individual tree height in Q. petraea whereas only the in-situ model was found 

significant for A. alba. In Q. petraea, selected in-situ and ex-situ models were based on the 

maximum temperature of the warmest month (Tmax). In A. alba, the selected in-situ model 

was based on the potential evapotranspiration of the warmest month (PETmax). Both in-situ 
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and ex-situ models indicated significant negative interaction between LTC and RCC (Table 1) 

and positive interaction between LTC and STC (Table 2) in both species. Hence, average 

plasticity differed among regions and provenances for both species.

In-situ selected models indicated significant positive effects of tree age and neighbour basal 

area on tree height (Table 1, Fig. S4.1). Tree height increased with increasing neighbour basal 

area in A. alba (P = 0.07) and with neighbour basal area towards warmer regions in Q. 

petraea (positive interaction between BAc and LTC, P = 0.02; Table 1). 

Statistical approximation of provenance and plasticity effects

Sessile oak (Quercus petraea)

Validation using common garden data indicated that predictions of tree height variation 

among provenances and among sites using the in-situ model were significantly correlated 

with observations in common gardens in Q. petraea (P < 0.001 for estimates of provenance 

and plasticity effects, and the total component of tree height, Fig. S6.3). Validation using ex-

situ model predictions showed high correlations between in-situ and ex-situ model 

predictions of the provenance and plasticity effects, and their interaction (Table 2, Fig. 2). We 

found significant quadratic responses of height to Tmax for the provenance effect (Fig. 2a), 

plasticity (Fig. 2b) and the total (Fig. 2c) variation, that were similar between in-situ and ex-

situ models with high correlations between paired predictions (r > 0.80, P < 0.001). We found 

high correlations between ex-situ and in-situ model paired predictions of cold (r = 0.65, P < 

0.001), core (r = 0.99, P < 0.001) and warm provenance mean reaction norms (r = 0.97, P < 

0.001). Both models showed similar patterns in Tmax optimums (i.e. Tmax values 

corresponding to maximum predicted heights) among cold, core and warm provenances that 

were respectively warmer and colder for warm and cold provenances (Kruskal-Wallis tests, P 
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< 0.001, Fig. 2d-e). The in-situ model, however, showed higher differences in optimums 

among provenances (Fig. 2e).

Silver fir (Abies alba)

In A. alba, the in-situ model showed significant quadratic responses of tree height to PETmax 

for the provenance and plasticity effects (Table 2). Validation using common garden data 

indicated that the in-situ model significantly predicted tree height variation among 

provenances in common gardens (provenance effect: r = 0.44, P < 0.01, Fig. 3a) and among 

sites (plasticity effect: r = 0.72, P < 0.001, Fig. 3b). The correlation was weak for the total 

variation (r = 0.20, P = 0.06, Fig. 3c, Fig. S7.3). The in-situ model predicted warmer 

optimums for warm provenances and colder optimums for cold provenances (Kruskal-Wallis 

tests, P < 0.001, Fig. 3d).

Range-wide spatial predictions of tree height

In Q. petraea, both the ex-situ and in-situ models predicted very similar spatial patterns (Fig. 

4) in the relative variation of tree height for provenance and plasticity effects, and their 

interaction, despite differences in absolute values for total variation for a given age and 

neighbour basal area (Fig. 4g-h). These differences are explained by the differences in tree 

age estimation between the two datasets (i.e. age is measured at breast height in NFI and as 

the time since sowing in common gardens). The quadratic response of tree height to LTC 

(Fig. 2a) predicted that trees living at the warm limit of the species range were the shortest, 

which is illustrated by the short heights predicted over southern Europe from the provenance 

effect (transparent colours, Fig. 4a-b). Similarly, trees inhabiting the warmest conditions in 

the southernmost part of the species distribution range were also predicted to be shorter from 

the phenotypic plasticity effect (Fig. 4c-d). Spatial predictions of interaction effects showed 
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an opposite pattern with increasing height towards warmer climates (Fig. 4e-f). Total 

variation followed spatial patterns of the provenance and plasticity effects (Fig. 4g-h). In A. 

alba, trees inhabiting cold climates (e.g. high elevation areas in the Alps) were predicted to be 

shorter according to the in-situ model (Fig. 5). In warm climates, the provenance effect (Fig. 

4a) and provenance × plasticity interaction (Fig. 5c) predicted taller trees while plasticity 

predicted smaller trees over southern Europe (Fig. 5b).

DISCUSSION

Can the effects of the provenance and phenotypic plasticity in tree height be inferred 

from in-situ observations?

To date, disentangling the sources of phenotypic variation has only been addressed by 

analysing common gardens or reciprocal transplant experiments (e.g. Kawecki & Ebert, 

2004; Hoffmann & Sgrò, 2011; Blanquart et al., 2013; Latreille & Pichot, 2017), using 

similar approaches as those that we named here ex-situ models. However, as common garden 

data are often scarce, we propose an alternative method for understanding the causes of 

phenotypic variation: using increasingly abundant data from field observations, such as NFI. 

Using the rationale of ex-situ models based on common garden data, we defined in-situ 

models based on NFI data and thoroughly validated in-situ model predictions with raw data 

coming from common gardens and with predictions from ex-situ models. 

Overall, our results show that in-situ models correctly predicted phenotypic patterns 

observed in common gardens (Table 2, Figs 2-5), suggesting that field observations (NFI) can 

be used to statistically approximate the range-wide intraspecific variation in tree height that is 

attributable to differences among provenances, plasticity and their interaction. In particular, 

our results suggest that differences among provenances that are related to their climate of 

origin can be statistically approximated using field measurements by modelling trait variation 
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as a function of the long-term regional climate (LTC), while the recent climate change (RCC) 

and its components (STC - LTC) can be used to estimate the plastic response of the trait.

In both species, the most parsimonious models (both in-situ and ex-situ) were based on 

climatic variables related to summer temperature: PETmax in A. alba and Tmax in Q. 

petraea. This underlies the high sensitivity of Abies alba to the evaporative demand in 

summer (Lebourgeois et al., 2013) and that temperature chiefly drove differences in tree 

height among Q. petraea provenances while drought mostly drove plastic responses for tree 

height and survival in this species (Sáenz-Romero et al., 2017).

Common patterns of among-provenance variation in tree height plasticity: implications 

for species distribution ranges under climate change 

In both species, we found hump-shaped relationships between height and climate for the 

provenance (long-term climate) and plasticity effects (short-term climate) and a positive 

interaction effect between them (Table 2, Figs 2-3). The latter indicated that climatic optima 

of provenances co-vary positively with their climate of origin: warmer provenances grow 

taller in warmer climates and colder provenances grow taller in colder climates (Figs 2d-e 

and 3d), suggesting local adaptation in both species and that plasticity differs significantly 

among populations (Wang et al., 2006; Leites et al., 2012; Münzbergová et al., 2017; Sáenz-

Romero et al., 2017). This consistency between A. alba (a mountain evergreen conifer tree) 

and Q. petraea (a temperate deciduous broadleaved tree) points to potential common patterns 

in local adaptation and plasticity among tree species, as recently indicated in boreal conifer 

trees (Pedlar & McKenney, 2017).

Our spatial predictions of phenotypic plasticity suggest that tree height of warm provenances 

has decreased in response to recent climate warming, mostly in southern Europe (Figs 4-5). 

These results suggest that recent warming may have pushed species at the warmest boundary 
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of the distribution range beyond their tolerance limits, that is corroborated by a higher 

mortality in warmest/driest range margins for A. alba, Q. petraea and other European tree 

species (Cailleret et al., 2014; Benito Garzón et al., 2018). Furthermore, we found that the 

effect of neighbour basal area on tree height was dependent on the climate of the bioclimatic 

region in Q. petraea, emphasising that tree sensitivity to biotic interaction (e.g. competition) 

may change along climatic gradients (Gomez-Aparicio et al., 2011; Kunstler et al., 2016).

Limitations and perspectives 

Our approach needs an extensive network of common gardens to well identify reaction norms 

that are at the basis of the models. For instance, in A. alba models that are based in 

significantly less data than those of Q. petraea, we did not find any significant ex-situ model.

Another limitation of our approach comes from the large difference in the age of trees 

(older in NFI data) and the fact that NFI data rely on dominant trees, that might partly 

explained that a stronger signal of local adaptation (i.e. higher differences in climatic optima) 

was found using NFI data for Q. petraea (Fig. 2d).

Finally, the among-provenances differences found by our approach are not only related to 

local adaptation, but also to neutral, adaptive and even maladaptive components of genetic 

variation that were not taken into account. New analysis using genomic data across species 

ranges is the natural next step to fully understand genetic effects (including neutral, adaptive 

and maladaptive components of genetic variation) in natural and common garden populations 

(Fitzpatrick & Keller, 2015; Bay et al., 2018; Josephs et al., 2019). 

CONCLUSION

We show that phenotypic plasticity, provenance effects and their interaction can be 

statistically approximated using field observations of wild tree populations subject to recent 
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climate warming. However, further studies are needed to determine whether the ability of in-

situ models to predict trends in common garden experiments represent a shared underlying 

cause that can be generalized to other situations, i.e. whether climate variations at different 

scales can be used to separate local adaptation and plastic responses to climate in field 

conditions. The modelling framework used in our study could be applied to many species and 

traits, offering a promising avenue to enhance our understanding of local adaptation and 

plasticity patterns across large geographical gradients.
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TABLES

Table 1 Estimates of in-situ and ex-situ linear mixed-effect models of individual tree height 

data (log-transformed). In-situ models were fit on 5376 trees (height measurements) in 3617 

plots nested in 22 bioclimatic regions (random groups) for Q. petraea and on 1304 trees in 

904 plots nested in 15 bioclimatic regions for A. alba. Bioclimatic regions were added as 

random effects in in-situ model for Q. petraea but not for A. alba. Ex-situ models were fit on 

130241 trees (height measurements) from 141 provenances that were planted in 591 blocs 

nested in 13 sites (random groups) for Q. petraea and on 13314 trees from 47 provenances 

planted in 166 blocs nested in 6 sites for A. alba. No significant ex-situ models were found in 

A. alba. The climatic variable used to compute LTC and RCC is the maximal temperature of 

the warmest month in Quercus petraea  and the potential evapotranspiration of the warmest 

month in Abies alba. The percentage of the variance explained by the models is measured by 

the marginal (fixed effects, m) and conditional (both fixed and random effects, c) adjusted R2. 

‘Df’ degree of freedom, ‘BAc’ sum of basal area of neighbouring competitor trees, ‘LTC’ 

long-term climate, ‘RCC’ recent climate change.

Table 2  Mean bootstrap estimates (± SD) of tree height variation due to provenance and 

plasticity effects, and their interaction, computed from in-situ (NFI) model and ex-situ 

(common garden) model. ‘x’ and ‘x2’ indicate linear and quadratic terms respectively. 

Significant differences of bootstrapped values (n = 200) to null values were tested using t-

tests; all are significant at P < 0.001.
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Table 1

in-situ ex-situ

Quercus 
petraea

Estimate (±SE) Df t-value P Estimate (±SE) Df t-value P

Intercept -13.40 (4.07) 3589 -3.3 0.001 -12.38 (2.23) 129643 -5.54 <0.001
log(age) 0.311 (0.009) 1758 34.53 <0.001 1.322 (0.008) 129643 167.71 <0.001
log(BAc) -0.171 (0.133) 1758 -1.29 0.197

LTC 1.269 (0.354) 19 3.59 0.002 0.903 (0.181) 129643 5 <0.001
LTC2 -0.028 (0.008) 19 -3.58 0.002 -0.020 (0.004) 129643 -5.55 <0.001
RCC 0.440 (0.118) 3589 3.72 <0.001 0.730 (0.182) 129643 4.01 <0.001
RCC2 -0.017 (0.003) 3589 -5.22 <0.001 -0.018 (0.004) 129643 -4.95 <0.001

LTC:RCC -0.018 (0.005) 3589 -4.02 <0.001 -0.031 (0.007) 129643 -4.26 <0.001
log(BAc):LTC 0.013 (0.006) 1758 2.38 0.017
log(age):RCC 0.009 (0.007) 1758 1.3 0.193 -0.012 (0.003) 129643 -3.63 <0.001
R2 (m/c) (%) 41/91 26/65

Abies
alba

Estimate (±SE) Df t-value P

Intercept 0.732 (0.649) 898 -1.13 0.259
log(age) 0.319 (0.014) 396 23.57 <0.001
log(BAc) 0.224 (0.123) 396 1.82 0.069

LTC 0.024 (0.008) 898 2.95 0.003
LTC2 -7.3 10-5 (2.8 10-5) 898 -2.63 0.009
RCC 0.009 (0.006) 898 1.46 0.146
RCC2 -9.9 10-5 (2.3 10-5) 898 -4.36 <0.001

LTC:RCC -8.3 10-5 (3.8 10-5) 898 -2.17 0.030
log(BAc):LTC -2.4 10-4 (9.5 10-4) 396 -0.25 0.803
log(age):RCC 0.002 (8.4 10-4) 396 1.92 0.056
R2 (m/c) (%) 49/86
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Table 2

Provenance effect Phenotypic plasticity
interaction

x x2 x x2

Quercus petraea
ex-situ model

0.191
(0.026)

-7.3 10-3

(0.35 10-3)
0.712

(0.169)
-0.017
(0.003)

4.6 10-3

(0.68 10-3)

Quercus petraea
in-situ model

0.548
(0.365)

-0.022
(0.009)

0.465
(0.122)

-0.018
(0.003)

0.018
(0.007)

Abies alba
in-situ model

0.014
(0.007)

-8.6 10-5

(2.1 10-5)
0.010

(0.007)
-9.2 10-5

(2.1 10-5)
1.0 10-4

(0.4 10-4)
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FIGURES

Figure 1 Workflow of the modelling approach and validation methods. We used individual 
tree height data from National Forest Inventories (NFI) to calibrate a mixed-effect model 
(‘in-situ model’) as a function of long-term climate (LTC) of the bioclimatic region and short-
term climate (STC) of the forest plot to disentangle local adaptation, plasticity and their 
interaction on intraspecific trait variation. To validate our approach, we compared in-situ 
model predictions with independent observations of tree height variation in common gardens 
where trait differences among populations of different geographical origin (i.e., the 
provenance) and their plasticity can be separated. In-situ model predictions of tree height 
variation among provenances and among planting sites were compared to observations in 
common gardens (validation using common garden data) and to predictions from a parallel 
model calibrated using common garden data (validation using ex-situ model predictions). 
Validation using ex-situ model predictions needs common garden data covering large climatic 
gradients (as is the case of Quercus petraea in this study) which is not always feasible, while 
validation using common garden data can be used also with scarce common data networks 
(as is the case of Abies alba in this study).
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Figure 2 Comparison of in-situ model (NFI) and ex-situ model (common gardens) 
predictions of provenance (a) and plasticity effects (b), and the total component (c) of tree 
height variation, recorded in common gardens in Quercus petraea. Pearson correlation 
coefficients between ex-situ and in-situ model predictions are reported. (d-e) Model 
predictions of plastic responses among provenances (provenance × plasticity interaction). 
Temperature optima for cold, core and warm provenances are indicated by horizontal 
boxplots; vertical coloured lines indicate mean optimum values. Significant differences in 
temperature optimum were tested using Kruskal-Wallis tests: χ2 = 105.2 in d) and χ2 = 104.2 
in e), P < 0.001 for both. Shaded areas and lines represent the standard deviation around 
average model predictions (computed by bootstrapping in a-c). Predictions were scaled 
between 0–1 independently for in-situ and ex-situ models. Model parameters (coefficients 
and significance) are presented in Table 1. Validation analyses using common garden data are 
presented in Appendix S3.
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Figure 3 Comparison of in-situ (NFI) model predictions and common garden data (ex-situ) 
estimates of provenance (a) and plasticity effects (b), and the total component (c) of tree 
height variation, recorded in common gardens in Abies alba. Points represent provenance 
means in a) and provenance-by-site means in b-c that were computed according to the 
validation method using common garden data (see Fig. 1). Computation of provenance and 
plasticity effects, and the total variation is described in Appendix S3. Pearson correlation 
coefficients between ex-situ data and in-situ model predictions are reported. (d) In-situ model 
predictions of plastic responses among provenances (provenance × plasticity interaction). 
Temperature optima for cold, core and warm provenances are indicated by horizontal 
boxplots; vertical coloured lines indicate mean optimum values. Significant differences in 
temperature optimum were tested using Kruskal-Wallis tests: χ2 = 105.2, P < 0.001. Shaded 
areas and lines represent the standard deviation around average model predictions (computed 
by bootstrapping in a-c). Height values were scaled between 0–1 independently for in-situ 
predictions and common garden data. In-situ model parameters (coefficients and significance) 
are presented in Table 1.
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Figure 4 Spatial predictions of Quercus petraea range-wide variation in tree height using ex-
situ (a, c, e, g) and in-situ models (b, d, f, h). Maps indicate the provenance effect (a-b), 
plasticity (c-d), their interaction (e-f) and the total variation of tree height (g-h). The shaded 
area represents model predictions outside the natural distribution range of the species. 
Predictions are for 12-years-old trees, with neighbour basal area set to average conditions (30 
m2 ha−1) in the in-situ model.
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Figure 5 Spatial predictions of Abies alba range-wide variation in tree height using the in-
situ model. Maps indicate the provenance effect (a), plasticity (b), their interaction (c) and the 
total variation of tree height (d). The shaded area represents model predictions outside the 
natural distribution range of the species. Predictions are for 12-years-old trees, with 
neighbour basal area set to average conditions (30 m2 ha−1).
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SUPPORTING INFORMATION

Inferring phenotypic plasticity and population responses to climate across tree species 
ranges using forest inventory data

Thibaut Fréjaville, Bruno Fady, Antoine Kremer, Alexis Ducousso, Marta Benito-Garzón

Appendix S1 Phenotypic and climate data

Fig. S1.1 Maps of NFI and common garden tree height data for Quercus petraea and Abies 
alba.

Fig. S2.1 Principal component Analysis of climatic conditions across NFI and common 
garden data for Quercus petraea and Abies alba. 

Fig. S3.1 Temporal trends (1901–2014) in annual mean temperature across species ranges. 

Fig. S4.1 Tree height variation as a function of tree age and neighbour basal area.

Table S1 Description of the 6 common gardens used for measuring tree height on Abies alba 
provenances.

Table S2 Description of Abies alba provenances planted in the 6 common gardens.

Appendix S2 Bioclimatic regionalisation of species’ natural distribution ranges

Fig. S5.2 Maps of bioclimatic regions within the natural distribution range of Quercus 
petraea and Abies alba.

Appendix S3 Model Validation

Validation using common garden data

Fig. S6.3 Correlation between in-situ model predictions and common garden data estimates 
of provenance and plasticity effects and the total component of variation in tree height in 
Quercus petraea.

Fig. S7.3 Correlation between in-situ model predictions and common garden data estimates 
of provenances and plasticity effects and the total component of variation in tree height in 
Abies alba.

Validation using ex-situ model predictions
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Appendix S1 Phenotypic and climate data

Figure S1.1 Geographic distribution of French National  Forest  Inventory data  (NFI)  and 
common garden experiments within the natural distribution range of  Quercus petraea and 
Abies alba. Black crosses represent NFI temporary forest plots (left panels) in which height, 
age  and  diameter  at  breast  height  were  measured  on  dominant  trees,  within  the  natural 
distribution  range  of  the  species  (green  area;  http://www.euforgen.org).  Common  garden 
experiments  (right  panels)  consist  of  planted  trees  from provenances  (seed  sources,  blue 
triangles)  covering  the  species  distribution  range  in  common gardens  (genetic  trials,  red 
squares).
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Figure S2.1 Principal component analysis (PCA) of short-term climate at  in-situ National 
Forest Inventory (NFI) plots (grey crosses) and ex-situ common gardens (red squares), and of 
long-term climate (LTC) of origin of populations planted in common gardens (‘provenance’, 
blue triangles) and of bioclimatic regions covered by NFI plots (black circles, see Appendix 
S2) for  Quercus petraea (a)  and  Abies alba (b).  The LTC distribution across the species 
natural distribution range is indicated by grey dots. Short-term climate represents the 10-yr 
means  before  tree  measurements  and  LTC the  1901–1960  means.  The  climatic  variance 
explained by the first two PCA axes is indicated in brackets. The PCA was computed using 

34



the  following  climatic  variables  downscaled  from  EuMedClim:  ‘bio1’  annual  mean 
temperature,  ‘bio5’  maximum  temperature  of  the  warmest  month,  ‘bio6’  minimum 
temperature  of  the  coldest  month,  ‘bio12’  annual  precipitation,  ‘bio13’  maximum 
precipitation  of  the  wettest  month,  ‘bio14’ minimum  precipitation  of  the  driest  month, 
‘pet.mean’ annual potential evapotranspiration, ‘pet.max’ potential evapotranspiration of the 
warmest  month,  ‘pet.min’ potential  evapotranspiration  of  the  coldest  month,  ‘ppet.mean’ 
annual water balance (precipitation minus evapotranspiration), ‘ppet.max’ water balance of 
the wettest month, ‘ppet.min’ water balance of the driest month. 

Figure  S3.1 Temporal  variation  (1901–2014)  in  annual  mean  temperature  (from 
http://gentree.data.inra.fr/climate/) averaged within the natural distribution range of Quercus  
petraea (red) and Abies alba (blue). Shaded area represents the standard deviation around the 
long-term average climate (1901–1960), prior to the acceleration of climate warming during 
the decades following 1960. The shapes of species distribution maps used to compute the 
temporal  variation  of  the  thermal  niches  were  sourced  from  Euforgen 
(http://www.euforgen.org).
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Figure S4.1 Tree height variation as a function of tree age (top) and neighbour basal area 
(bottom) in  Quercus petraea (black) and  Abies alba (grey) in National Forest Inventories 
(NFI, left) and common gardens (right). Neighbour basal area was assumed to be constant 
between and within common gardens. Tree age was estimated using wood increment cores 
collected at breast height (1.30 m) in NFI plots, whereas tree age is the time between the 
height measurement and the sowing date in common gardens. Note a log scale on both axes.
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Table S1 Description of the 6 French common gardens used for measuring phenotypic traits 
on Abies alba provenances. Data include: test site code (as in Table S3), name of forest where 
the site is located, name of region where the site is located, latitude (in degree decimal, to the  
4th decimal point), longitude (in degree decimal to the 4th decimal point), elevation (m a.s.l.), 
total size of the test site (in hectare), plantation density (trees per hectare) and number of A. 
alba provenances tested in the study (N).

Site code Site name Latitude Longitude Elevation Planting date Size Density N

60301 Bois Génard 48.1167 4.9833 320 1972 3 2500 2

70201 Rouvre Sur Aube 47.0167 4.9667 410 1967 3.88 2500 21

70203 La Brugère 44.5667 3.4517 1110 1967 3.22 2000 16

70402 Les Chauvets 44.5667 3.4483 1050 1972 4.31 2500 20

70502 Somail Chinchidou 43.5333 2.7333 920 1973 0.29 10000 35

70503 Somail Sagnassol 43.5361 2.7347 973 1973 0.42 2500 33

Note: the test site may contain other genetic material than the populations tested in this study,  
e.g. other species irrelevant to this study.
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Table  S2 Description  of  Abies  alba Mill.  provenances  in  the  6  common  gardens.  Data 
include:  population  code  number  and  name,  geographic  coordinates  in  degree  decimal, 
country of origin, and number of blocks (replicates) per site where the population is planted. 
‘B&H’ Bosnia & Herzegovina, ‘Czech’ Czech Republic.

Pop. code Pop. name Latitude Longitude Country 60301 70201 70203 70402 70502 70503

36549 FORE 45.517 3.550 France 5 5
36550 GRBO 45.350 4.517 France 5 5
36555 RUHP 47.767 12.650 Germany 80 32
36556 BEAR 42.967 2.400 France 5 5
36557 RIAL 42.950 2.367 France 5
36558 NEBS 42.900 2.133 France 5 5
36559 PUIV 42.900 2.033 France 6 5
36560 CALL II 42.850 2.117 France 5 5
36561 FANG II 42.833 2.283 France 5
36562 LAFA 42.767 2.000 France 6 5
36563 BALC 42.583 2.100 France 7 5
36564 CANG 42.550 2.450 France 6 5
36565 JOUX II 46.850 6.050 France 5 5
36566 DONO 48.517 7.167 France 5 5
36567 BOAJ 46.283 4.467 France 5 5
36568 MOLL 46.000 4.433 France 5
36569 BONO II 45.917 3.800 France 5 5
36570 JASO 45.533 2.133 France 5
36571 ECOU II 48.517 0.067 France 7 5
36572 PERS 48.300 0.300 France 5
36573 LASU 47.667 23.583 Romania 6 5
36574 PRAH 45.350 25.550 Romania 8 5
36575 BLIZ 51.117 20.750 Poland 80 32
36576 LA-SU II 45.850 22.483 Romania 5 80 32
36577 KURN 49.850 10.033 Germany 80 32
36578 PRAZ 44.483 7.050 Italy 80 32
36579 KOZA 45.000 17.063 B&H 80 32
36580 FANG IV 42.817 2.267 France 5 80 32
36581 ZWIE 49.017 13.233 Germany 80 32
36582 CALL IV 42.869 2.087 France 80 32
36583 CAMA 43.800 11.817 Italy 80 32
36585 TRIE 47.486 14.486 Austria 80 32
36586 RYTR 49.490 20.668 Poland 80 32
36588 KOBE 48.067 13.233 Austria 80 32
36589 VODC 44.135 17.189 B&H 80 32
36590 KELH 48.917 11.868 Germany 80 32
36591 SEVR II 48.791 0.464 France 6 80
36592 JOUX III 46.376 5.972 France 5 5 80 32
36594 ROSE 41.900 14.350 Italy 80 32
36596 HOHE 47.834 16.048 Austria 80 32
36597 STSA 49.563 20.636 Poland 80 32
36598 SBRU 38.583 16.333 Italy 80 32

36602 BANS 48.733 19.149 Slovakia 80 32

36603 SLLU 48.767 19.275 Slovakia 80 32

36604 PODS 49.283 20.183 Slovakia 80 32

36606 FRYD 50.921 15.079 Czech 80 32

36607 LOCH 47.457 7.640 Switzerland 80 32
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Appendix S2 Bioclimatic regionalisation of species natural distribution ranges

In contrast to the common garden experiments, the geographical origin of the seed source 
(i.e., the provenance) is unknown for NFI observations. To overcome this major limitation, 
we made the neutral assumption that the trees have a local origin. In other words, we assume 
that potential seed sources were mostly from local provenances within the bioclimatic region 
with a low probability of long-distance transfer. We therefore performed a fine bioclimatic 
partitioning of the species’ natural distribution range (Figure S5.2). The long-term climate of 
origin (LTC) was estimated as the long-term (1901-1960) average climate of the bioclimatic 
region in NFI. The recent climate change (RCC) is estimated as the difference between the 
recent short-term climate (STC) experienced by the tree in the NFI plot (averaged over the 
last decade of growth before tree height measurement) and the estimated LTC for the 
corresponding climatic variable.
For each species, the natural distribution range (http://www.euforgen.org) was partitioned 
into bioclimatic regions by K-means clustering using the R package vegan (Oksanen et al. 
2013) (Figure S5.2). We used the Caliński–Harabasz criterion (Caliński & Harabasz 1974) to 
select a statistically optimal number of regions (K = 70 for A. alba; K = 90 for Q. petraea) 
from a range of K (10 to 200 in steps of 10). Partitioning of bioclimatic regions was 
performed on Z-scores (standardised data) of long-term (1901–1960) averages of the 
following four climatic parameters: minimum temperature of the coldest month (°C), 
maximum temperature of the warmest month (°C), and total precipitation in the driest and the 
wettest months (mm); in addition to the latitude and longitude of the plots. 

References:
Caliński, T. & Harabasz, J. (1974) A dendrite method for cluster analysis. Commun. Stat. 3, 
1–27.
Oksanen, J. et al. (2013) vegan: Community Ecology Package. R package version 2.0-7.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team (2015) nlme: Linear and 
Nonlinear Mixed Effects Models. R package version 3.1–120. HttpCRANR-Proj.
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Figure S5.2 Bioclimatic regions within the natural distribution range of  Quercus petraea 
(top) and Abies alba (bottom). Colour gradient represents differences in long-term regional 
average  (1901–1960)  of  annual  mean  temperature,  from  blue  (coldest  regions)  to  red 
(warmest regions). Discontinuous areas of similar colour indicate a similar long-term mean 
temperature  between  bioclimatic  regions.  Number  of  bioclimatic  regions  across  species 
ranges: N = 90 and N = 70 for Q. petraea and for A. alba respectively.
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Appendix S3 Model validation

Validation using common garden data

In the case of validation by comparing the predictions of  in-situ models with raw common 
garden data, we standardized both predictions and raw data for differences in provenances, 
sites, age and  neighbour basal area.  First, the  in-situ model was used to predict the mean 
height of each provenance in each site (‘provenance-by-site’ means) from equation 3 (main 
text), using the LTC of the provenance and the STC of the site (i.e. common garden) for a 
given age (12-year-old trees, i.e. the most common age at the time of height measurements 
across  common gardens in  both species)  and neighbour basal  area (30 m2 ha-1).  Second, 
common garden data were standardized across ages using a linear mixed-effect model, where 
the log of tree height was regressed against the log of age with the provenance and the site set 
as random effects. In particular, we used model residuals computed from fixed effects only 
(i.e.  age)  to  compute  provenance-by-site  means  for  common garden  observations.  Third, 
provenance-by-site  means  of  common garden observations  and  in-situ model  predictions 
were standardized as follows, before comparing them using Pearson correlation coefficients.

To estimate differences in tree height among provenances (provenance effect), provenance-
by-site means were standardized (height values scaled between 0-1) independently for each 
site. In this way, we focused on height differences among provenances after accounting for 
differences in environmental conditions among sites (i.e. phenotypic plasticity effect). Then, 
we  computed  mean  values  by  provenance.  Pearson  coefficients  indicated  significant 
correlations between common garden data and in-situ model predictions for the provenance 
effect in Quercus petraea (Fig. S6.3a) and Abies alba (Fig. S7.3a). Moreover, in-situ model 
predictions well predicted tree height differences among cold, core and warm provenances, as 
indicated by boxplots (Figs S6.3a and S7.3a).

To  estimate  plasticity,  provenance-by-site  means  were  standardized  (height  values  scaled 
between  0-1)  independently  for  each  provenance.  In  this  way,  we  focused  on  height 
differences  among  sites  after  accounting  for  the  provenance  effect.  Pearson  coefficients 
indicated significant correlations between common garden data and in-situ model predictions 
for the plastic component in  Q. petraea (Fig. S6.3b) and A. alba (Fig. S7.3b). Considering 
cold, core and warm provenances separately, correlations were still significant at P < 0.05.

To estimate  the  total  component  of  variation  (sum of  provenance  effect  and provenance 
plasticity effect), provenance-by-site means were standardized across all data (height values 
scaled  between  0-1).  Pearson  coefficients  indicated  weak  correlations  in  both  species, 
significant in Q. petraea at P < 0.001 (Fig. S6.3c) and in A. alba at P < 0.10 (Fig. S7.3c). In-
situ model predictions reasonably predicted height differences among cold, core and warm 
provenances, as indicated by boxplots (Figs S6.3c and S7.3c).
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Fig S6.3  Pearson correlation coefficients between  in-situ model predictions (calibrated on 
NFI) and common garden data estimates of provenance (a) and plasticity effects (b) and of 
the total component of tree height variation (c) across Quercus petraea provenances. Points 
represent provenance means in a) and provenance-by-site means in b) and c). Tree height 
differences among cold (blue), core (green) and warm provenances (red) for common garden 
data and in-situ model predictions are indicated by boxplots in a) and c). Regression lines in 
b) illustrate correlations for phenotypic plasticity between common garden data and  in-situ 
model predictions for cold (blue), core (green), warm (red) and all provenances (black); all 
are significant at P < 0.05; crosses indicate mean site values.

Fig S7.3 Pearson correlation coefficients between  in-situ model predictions (calibrated on 
NFI) and common garden data estimates of provenance (a) and plasticity effects (b) and of 
the  total  component  of  tree  height  variation  (c)  across  Abies  alba provenances.  Points 
represent provenance means in a) and provenance-by-site means in b) and c). Tree height 
differences among cold (blue), core (green) and warm provenances (red) for common garden 
data and in-situ model predictions are indicated by boxplots in a) and c). Regression lines in 
b) illustrate correlations for phenotypic plasticity between common garden data and  in-situ 
model predictions for cold (blue), core (green), warm (red) and all provenances (black); all 
are significant at P < 0.05; crosses indicate mean site values. 
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Validation using ex-situ model predictions

In  the  case  of  validation  by  comparing  the  predictions  of  both  models,  we  predicted 
provenance  and  plasticity  effects,  and  their  interaction,  as  a  function  of  LTC  and  STC 
conditions in common gardens. In particular, using equation 3 (main text) we predicted the 
relative variation of tree height as a function of  LTCj (i.e., the provenance effect) by fixing 
STCk to mean observed values across common gardens (i.e., for average climate of planting 
sites).  Reciprocally,  the  relative  variation  of  tree  height  as  a  function  of  STCk   (i.e.,  the 
phenotypic  plasticity  effect)  was  fitted  by  fixing  LTCj to  mean  observed  values  across 
provenances  (i.e.,  for  a  mean-climate  provenance).  To  predict  plastic  responses  of  each 
provenance j, we fitted height as a function of STCk and the interaction term LTCj × STCk. For 
this, we scaled predicted values between 0–1 independently for each provenance j to focus on 
the relative variation of height among provenances. The total component of variation was 
fitted as a function of LTCj, STCk and LTCj × STCk, i.e. the sum of provenance and plasticity 
effects  and their  interaction.  Covariates  in  equation  2 (main  text)  were  fixed to  constant 
values, i.e. age (the most common age in common garden data, 12-year-old trees), BAc (mean 
observed value in NFI, ~30 m2 ha−1) and their interaction with RCCjk and LTCj, respectively. 
Confidence intervals (SD) of predicted values along STCk and LTCj gradients were computed 
by bootstrapping, i.e., 200 model runs on 50% randomly sampled trees with replacement. In 
the  comparison  of  plasticity  among  provenances,  confidence  intervals  (SD)  of  predicted 
values along STCk were computed among ‘cold’, ‘core’ and ‘warm’ provenances. 
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